Predicting underwater radiated noise levels due to the first offshore wind turbine installation in the U.S.

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Noise generated by offshore impact pile driving radiates into the air, water and sediment. Predicting noise levels around the support structures at sea is required to estimate the effects of the noise on marine life. Based on high demands developing renewable energy source, the United States will begin the first pile driving within one to two years. It is necessary to investigate acoustic impact using our previously verified coupled Finite Element (Commercial FE code Abaqus) and Monterey Miami Parabolic Equation (2D MMPE) models (J. Acoust. Soc. Am. 131(4), p. 3392, 2012). In the present study, we developed a new coupled FE-MMPE model for the identification of zone of injury due to offshore impact pile driving. FE analysis produced acoustic pressure outputs on the surface of the pile which are used as a starting field for a long range 2D MMPE propagation model. It calculates transmission loss for N different azimuthal directions as function of distance from the location of piling with the inputs of corresponding bathymetry and sediment properties. We will present predicted zone of injury by connecting N different distances of equivalent level fishes may get permanent injury due to the first offshore wind farm installation in the U.S. © 2013 Acoustical Society of America.

Cite

CITATION STYLE

APA

Kim, H., Miller, J. H., & Potty, G. R. (2013). Predicting underwater radiated noise levels due to the first offshore wind turbine installation in the U.S. In Proceedings of Meetings on Acoustics (Vol. 19). https://doi.org/10.1121/1.4799983

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free