The separation of Li+ from an aqueous solution has received much attention in recent years because of its wide application in batteries and nuclear energy. A cellulose microsphere adsorbent with sulfonic acid groups (named as CGS) was successfully prepared by the pre-irradiation-induced emulsion graft polymerization of glycidyl methacrylate onto cellulose microspheres through subsequent sulfonation and protonation. The adsorption performance of Li+ onto the CGS adsorbent is investigated in detail. The as-prepared CGS adsorbent exhibited fast adsorption kinetics and a high adsorption capacity of Li+ (16.0 mg/g) in a wide pH range from 4 to 10. The existence of K+ and Na+ was found to have the ability to affect the adsorption capacity of Li+ due to the cation-exchange adsorption mechanism, which was further confirmed by X-ray photoelectron spectroscopy (XPS). The column adsorption experiment indicated that the adsorption capacity of CGS agreed well with the batch adsorption, and a fast desorption could be obtained in 10 min. It is expected that CGS has potential usage in the adsorption separation of Li+ from an aqueous solution.
CITATION STYLE
Xu, C., Yu, T., Peng, J., Zhao, L., Li, J., & Zhai, M. (2020). Efficient adsorption performance of lithium ion onto cellulose microspheres with sulfonic acid groups. Quantum Beam Science, 4(1). https://doi.org/10.3390/qubs4010006
Mendeley helps you to discover research relevant for your work.