Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN

17Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Epilepsy is one of the diseases of the nervous system, which has a large population in the world. Traditional diagnosis methods mostly depended on the professional neurologists’ reading of the electroencephalogram (EEG), which was time-consuming, inefficient, and subjective. In recent years, automatic epilepsy diagnosis of EEG by deep learning had attracted more and more attention. But the potential of deep neural networks in seizure detection had not been fully developed. Methods: In this article, we used a one-dimensional convolutional neural network (1-D CNN) to replace the residual network architecture’s traditional convolutional neural network (CNN). Moreover, we combined the Independent recurrent neural network (indRNN) and CNN to form a new residual network architecture-independent convolutional recurrent neural network (RCNN). Our model can achieve an automatic diagnosis of epilepsy EEG. Firstly, the important features of EEG were learned by using the residual network architecture of 1-D CNN. Then the relationship between the sequences were learned by using the recurrent neural network. Finally, the model outputted the classification results. Results: On the small sample data sets of Bonn University, our method was superior to the baseline methods and achieved 100% classification accuracy, 100% classification specificity. For the noisy real-world data, our method also exhibited powerful performance. Conclusion: The model we proposed can quickly and accurately identify the different periods of EEG in an ideal condition and the real-world condition. The model can provide automatic detection capabilities for clinical epilepsy EEG detection. We hoped to provide a positive significance for the prediction of epileptic seizures EEG.

Cite

CITATION STYLE

APA

Ma, M., Cheng, Y., Wei, X., Chen, Z., & Zhou, Y. (2021). Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN. BMC Medical Informatics and Decision Making, 21. https://doi.org/10.1186/s12911-021-01438-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free