A novel Pt/ACF (Pt supported on activated carbon fibers) electrode was successfully prepared with impregnation and electrodeposition method. Characterization of the electrodes indicated that the Pt/ACF electrode had a larger effective area and more active sites. Electrochemical degradation of ethylenediaminetetra-acetic acid (EDTA) in aqueous solution with Pt/ACF electrodes was investigated. The results showed that the 3% Pt/ACF electrode had a better effect on EDTA removal. The operational parameters influencing the electrochemical degradation of EDTA with 3% Pt/ACF electrode were optimized and the optimal removal of EDTA and chemical oxygen demand (COD) were 94% and 60% after 100 min on condition of the electrolyte concentration, initial concentration of EDTA, current density and initial value of pH were 0.1 mol/L, 300 mg/L, 40 mA/cm2 and 5.0, respectively. The degradation intermediates of EDTA in electrochemical oxidation with 3% Pt/ACF electrode were identified by gas chromatography-mass spectrum (GC-MS).
CITATION STYLE
Zhao, B., Zhu, W., Mu, T., Hu, Z., & Duan, T. (2017). Electrochemical oxidation of EDTA in nuclear wastewater using platinum supported on activated carbon fibers. International Journal of Environmental Research and Public Health, 14(7). https://doi.org/10.3390/ijerph14070819
Mendeley helps you to discover research relevant for your work.