Concurrent heart rate validity of wearable technology devices during trail running

46Citations
Citations of this article
141Readers
Mendeley users who have this article in their library.

Abstract

Validation of heart rate responses in wearable technology devices is generally composed of laboratory-based protocols that are steady state in nature and as a result, high accuracy measures are returned. However, there is a need to understand device validity in applied settings that include varied intensities of exercise. The purpose was to determine concurrent heart rate validity during trail running. Twenty-one healthy participants volunteered (female n = 10, [mean (SD)]: age = 31 [11] years, height = 173.0 [7] cm, mass = 75.6 [13] kg). Participants were outfitted with wearable technology devices (Garmin Fenix 5 wristwatch, Jabra Elite Sport earbuds, Motiv ring, Scosche Rhythm+ forearm band, Suunto Spartan Sport watch with accompanying chest strap) and completed a self-paced 3.22 km trail run while concurrently wearing a criterion heart rate strap (Polar H7 heart rate monitor). The trail runs were out-and-back with the first 1.61 km in an uphill direction, and the 1.61 return being downhill in nature. Validity was determined through three methods: Mean Absolute Percent Error (MAPE), Bland-Altman Limits of Agreement (LOA), and Lin’s Concordance Coefficient (rC). Validity measures overall are as follows: Garmin Fenix 5 (MAPE = 13%, LOA = -32 to 162, rC = 0.32), Jabra Elite Sport (MAPE = 23%, LOA = -464 to 503, rC = 0.38), Motiv ring (MAPE = 16%, LOA = -52 to 96, rC = 0.29), Scosche Rhythm+ (MAPE = 6%, LOA = -114 to 120, rC = 0.79), Suunto Spartan Sport (MAPE = 2%, LOA = -62 to 61, rC = 0.96). All photoplethysmography-based (PPG) devices displayed poor heart rate agreement during variable intensity trail running. Until technological advances occur in PPG-based devices allowing for acceptable agreement, heart rate in outdoor environments should be obtained using an ECG-based chest strap that can be connected to a wristwatch or other comparable receiver.

Cite

CITATION STYLE

APA

Navalta, J. W., Montes, J., Bodell, N. G., Salatto, R. W., Manning, J. W., & DeBeliso, M. (2020). Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE, 15(8 August). https://doi.org/10.1371/journal.pone.0238569

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free