Life and the Need for a Solvent

  • Schulze-Makuch D
  • Irwin L
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Life as we know it consists of chemical interactions that take place in the liquid state, yet the requirement that life be liquid-based is not normally part of anyone's definition of a living system. Thus, we cannot state categorically that life in either a solid or gaseous state is impossible. There are, however, compelling theoretical advantages for the complex chemical interactions that compose the living state to occur in a liquid medium. These include (1) an environment that allows for the stability of some chemical bonds to maintain macromolecular structure, while (2) promoting the dissolution of other chemical bonds with sufficient ease to enable frequent chemical interchange and energy transformations from one molecular state to another; (3) the ability to dissolve many solutes while enabling some macromolecules to resist dissolution, thereby providing boundaries, surfaces, interfaces, and stereochemical stability; (4) a density sufficient to maintain critical concentrations of reactants and constrain their dispersal; (5) a medium that provides both an upper and lower limit to the temperatures and pressures at which biochemical reactions operate, thereby funneling the evolution of metabolic pathways into a narrower range optimized for multiple interactions; and (6) a buffer against environmental fluctuations. For a substance to be an effective solvent for living processes, its physical properties in the liquid state must be matched to those of the environment in which it occurs. Those relevant properties include the requirement that it be liquid at the prevailing temperatures and pressures on the planetary body in question. These properties include the melting and boiling point of the solvent, but also its critical temperature and pressure. The critical temperature of a compound is that temperature beyond which the liquid phase cannot exist, no matter how much pressure is applied to it. The critical pressure of a substance is the pressure required to liquefy a gas at its critical temperature. A suitable solvent must also have sufficient physical buffering capacity, which can be specified by its enthalpy of fusion (melting) and vaporization (kJ/mol) describing the amount of energy needed to change 1 mol of the substance from solid to liquid at its melting point and from liquid to gas at its boiling point, respectively. A large temperature range for the liquid state is favorable. For those reactions that depend on the making and breaking of ionic and hydrogen bonds, and

Cite

CITATION STYLE

APA

Schulze-Makuch, D., & Irwin, L. N. (2018). Life and the Need for a Solvent. In Life in the Universe (pp. 123–147). Springer International Publishing. https://doi.org/10.1007/978-3-319-97658-7_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free