Recombinant Activated Protein C (rhAPC) Affects Lipopolysaccharide-Induced Mechanical Compliance Changes and Beat Frequency of mESC-Derived Cardiomyocyte Monolayers

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background:Septic cardiomyopathy increases mortality by 70% to 90% and results in mechanical dysfunction of cells.Methods:Here, we created a LPS-induced in-vitro sepsis model with mouse embryonic stem cell-derived cardiomyocytes (mESC-CM) using the CellDrum technology which simultaneously measures mechanical compliance and beat frequency of mESCs. Visualization of reactive oxygen species (ROS), actin stress fibers, and mRNA quantification of endothelial protein C receptor (EPCR) and protease-activated receptor 1 (PAR1) before/after LPS incubation were used for method validation. Since activated protein C (APC) has cardioprotective effects, samples were treated with human recombinant APC (rhAPC) with/-out LPS predamage to demonstrate the application in therapeutic studies.Results:Twelve hours LPS treatment (5 μg/mL) increased ROS and decreased actin stress fiber density and significantly downregulated EPCR and PAR1 compared to control samples (0.26, 0.39-fold respectively). rhAPC application (5 μg/mL, 12 h) decreased ROS and recovered actin density, EPCR, and PAR1 levels were significantly upregulated compared to LPS predamaged samples (4.79, 3.49-fold respectively). The beat frequencies were significantly decreased after 6- (86%) and 12 h (73%) of LPS application. Mechanical compliance of monolayers significantly increased in a time-dependent manner, up to eight times upon 12-h LPS incubation compared to controls. rhAPC incubation increased the beat frequency by 127% (6h-LPS) and 123% (12h-LPS) and decreased mechanical compliance by 68% (12h-LPS) compared to LPS predamaged samples.Conclusion:LPS-induced contraction dysfunction and the reversal effects of rhAPC were successfully assessed by the mechanical properties of mESC-CMs. The CellDrum technology proved a decent tool to simulate sepsis in-vitro.

Cite

CITATION STYLE

APA

Temiz Artmann, A., Kurulgan Demirci, E., Firat, I. S., Oflaz, H., & Artmann, G. M. (2022). Recombinant Activated Protein C (rhAPC) Affects Lipopolysaccharide-Induced Mechanical Compliance Changes and Beat Frequency of mESC-Derived Cardiomyocyte Monolayers. Shock, 57(4), 544–552. https://doi.org/10.1097/SHK.0000000000001845

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free