Movement timing and invariance arise from several geometries

64Citations
Citations of this article
113Readers
Mendeley users who have this article in their library.

Abstract

Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain uses different mixtures of these geometries to encode movement duration and speed, and the ontogeny of such representations. © 2009 Bennequin et al.

Cite

CITATION STYLE

APA

Bennequin, D., Fuchs, R., Berthoz, A., & Flash, T. (2009). Movement timing and invariance arise from several geometries. PLoS Computational Biology, 5(7). https://doi.org/10.1371/journal.pcbi.1000426

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free