Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller-Based Variable Perturbation Size Real-Time Adaptive Perturb and Observe (PO) MPPT Algorithm for PV Systems

22Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller based variable perturbation size real-time adaptive perturb and observe (PO) maximum power point tracking (MPPT) algorithm is presented. The proposed control scheme resolved the drawbacks of conventional PO MPPT method associated with the use of constant perturbation size that leads to poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller's resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in PO algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The proposed control scheme is verified using MATLAB/Simulink by applying comparative analysis with PI controlled conventional PO MPPT algorithm. Moreover, performance of the proposed control scheme is validated experimentally with the implementation of MATLAB/Simulink/Stateflow on dSPACE Real-time-interface (RTI) 1007 processor board, DS2004 A/D and CP4002 Digital I/O boards. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.

Cite

CITATION STYLE

APA

Yanarates, C., Wang, Y., & Zhou, Z. (2021). Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller-Based Variable Perturbation Size Real-Time Adaptive Perturb and Observe (PO) MPPT Algorithm for PV Systems. IEEE Access, 9, 138468–138482. https://doi.org/10.1109/ACCESS.2021.3119042

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free