MicroRNA Let-7a, -7e and -133a Attenuate Hypoxia-Induced Atrial Fibrosis via Targeting Collagen Expression and the JNK Pathway in HL1 Cardiomyocytes

12Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Fibrosis is a hallmark of atrial structural remodeling. The main aim of this study was to investigate the role of micro-ribonucleic acids (miRNAs) in the modulation of fibrotic molecular mechanisms in response to hypoxic conditions, which may mediate atrial fibrosis. Under a condition of hypoxia induced by a hypoxia chamber, miRNA arrays were used to identify the specific miRNAs associated with the modulation of fibrotic genes. Luciferase assay, real-time polymerase chain reaction, immunofluorescence and Western blotting were used to investigate the effects of miRNAs on the expressions of the fibrotic markers collagen I and III (COL1A, COL3A) and phosphorylation levels of the stress kinase c-Jun N-terminal kinase (JNK) pathway in a cultured HL-1 atrial cardiomyocytes cell line. COL1A and COL3A were found to be the direct regulatory targets of miR-let-7a, miR-let-7e and miR-133a in hypoxic atrial cardiac cells in vitro. The expressions of COL1A and COL3A were influenced by treatment with miRNA mimic and antagomir while hypoxia-induced collagen expression was inhibited by the delivery of miR-133a, miR-let-7a or miR-let-7e. The JNK pathway was critical in the pathogenesis of atrial fibrosis. The JNK inhibitor SP600125 increased miRNA expressions and repressed the fibrotic markers COL1A and COL3A. In conclusion, MiRNA let-7a, miR-let-7e and miR-133a play important roles in hypoxia-related atrial fibrosis by inhibiting collagen expression and post-transcriptional repression by the JNK pathway. These novel findings may lead to the development of new therapeutic strategies.

Author supplied keywords

Cite

CITATION STYLE

APA

Lo, C. H., Li, L. C., Yang, S. F., Tsai, C. F., Chuang, Y. T., Chu, H. J., & Ueng, K. C. (2022). MicroRNA Let-7a, -7e and -133a Attenuate Hypoxia-Induced Atrial Fibrosis via Targeting Collagen Expression and the JNK Pathway in HL1 Cardiomyocytes. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms23179636

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free