Graphene-bioactive glass composites: Structural, Vickers hardness, and gamma-ray attenuation characteristics

0Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.

Abstract

Introduction: Graphene-based materials have gained increasing attention for use in radiation attenuation applications. In this study, pristine graphene nanoplatelet-containing (1, 3, 5, and 10 wt%) borate-based bioactive glass composites were prepared. Methods: Structural properties, Vickers microhardness, and gamma-ray radiation shielding properties of the fabricated composites were examined in detail. Results and Discussion: Results revealed that the inclusion of the graphene in the glass matrix led to a decrease in the bulk density of the glass-based composites from 2.41 to 2.31 g/cm3. Similarly, a decrease in Vickers hardness was obtained as the graphene concentration was increased due to a convoluted effect of the non-uniform distribution of graphene nanoplatelets in the bioactive glass matrix and the higher residual porosity. Vickers hardness of the bare and the 10 wt% graphene-containing bioactive glass discs were measured to be 5.03 ± 0.28 GPa and 1.87 ± 0.56 GPa, respectively. On the other hand, the incorporation of graphene starting from 3 wt% decreased the crack propagation after indentation which may be attributed to an increase in fracture toughness. In the study, fundamental gamma ray absorption properties of graphene-containing bioactive glasses were examined in the 0.015–15 MeV incident photon energy range. For this purpose, the Py-MLBUF code was employed to determine gamma ray absorption parameters. Results showed that linear attenuation coefficients of the glass-based composites decreased due to a decrease in the density of the samples. On the other hand, as graphene was incorporated into the bioactive glass structure, exposure buildup factor and energy absorption buildup factor values increased. The growing graphene ratio in the glass structure contributed negatively to the photon’s tendency to interact with the material.

Cite

CITATION STYLE

APA

Deliormanli, A. M., ALMisned, G., Ene, A., & Tekin, H. O. (2023). Graphene-bioactive glass composites: Structural, Vickers hardness, and gamma-ray attenuation characteristics. Frontiers in Materials, 10. https://doi.org/10.3389/fmats.2023.1179502

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free