Fe2TiO5/C photocatalysts were synthesized by a solid-state reaction method (Fe2TiO5/C(S)) and nonhydrolytic sol-gel (NHSG) method (Fe2TiO5/C(N)), where C was introduced by external carbon and in situ carbon sources, respectively. The Fe2TiO5/C(N) photocatalyst with in situ carbon has much better photocatalytic degradation efficiency than that of Fe2TiO5/C(S) synthesized by doping external carbon. The superiorities of in situ carbon were demonstrated by SEM, EDS, BET and photoelectrochemical analysis. Compared with Fe2TiO5/C(S) using external carbon as a carbon source, Fe2TiO5/C(N) with in situ carbon exhibits more uniform elemental distribution, much larger surface area, higher photocurrent density and lower resistivity of interfacial charge transfer. The results show that the introduction of in situ carbon via the NHSG method more easily promotes the separation of photogenerated electron-hole pairs, owing to the uniformity of the carbon element, thereby improving the photocatalytic activity of the photocatalyst. This journal is
CITATION STYLE
Zhao, Q., Feng, G., Jiang, F., Lan, S., Chen, J., Liu, M., … Jiang, W. (2020). Comparison of Fe2TiO5/C photocatalysts synthesized: Via a nonhydrolytic sol-gel method and solid-state reaction method. RSC Advances, 10(71), 43762–43772. https://doi.org/10.1039/d0ra07884k
Mendeley helps you to discover research relevant for your work.