To solve the problems related to inhomogeneous connections among the attributes, we introduce a novel multiple attribute group decision-making (MAGDM) method based on the introduced linguistic neutrosophic generalized weighted partitioned Bonferroni mean operator (LNGWPBM) for linguistic neutrosophic numbers (LNNs). First of all, inspired by the merits of the generalized partitioned Bonferroni mean (GPBM) operator and LNNs, we combine the GPBM operator and LNNs to propose the linguistic neutrosophic GPBM (LNGPBM) operator, which supposes that the relationships are heterogeneous among the attributes in MAGDM. Then, we discuss its desirable properties and some special cases. In addition, aimed at the different importance of each attribute, the weighted form of the LNGPBM operator is investigated, which we call the LNGWPBM operator. Then, we discuss some of its desirable properties and special examples accordingly. In the end, we propose a novel MAGDM method on the basis of the introduced LNGWPBM operator, and illustrate its validity and merit by comparing it with the existing methods.
CITATION STYLE
Wang, Y., & Liu, P. (2018). Linguistic neutrosophic generalized partitioned Bonferroni mean operators and their application to multi-attribute group decision making. Symmetry, 10(5). https://doi.org/10.3390/sym10050160
Mendeley helps you to discover research relevant for your work.