The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: a-and b/c-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that aB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the aA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding b/c-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (X-crystallin/Aldh1a9) and both vertebrate lenses (g-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.
CITATION STYLE
Cvekl, A., Zhao, Y., McGreal, R., Xie, Q., Gu, X., & Zheng, D. (2017). Evolutionary origins of Pax6 control of crystallin genes. Genome Biology and Evolution, 9(8), 2075–2092. https://doi.org/10.1093/gbe/evx153
Mendeley helps you to discover research relevant for your work.