Laplacian spectrum learning

4Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The eigenspectrum of a graph Laplacian encodes smoothness information over the graph. A natural approach to learning involves transforming the spectrum of a graph Laplacian to obtain a kernel. While manual exploration of the spectrum is conceivable, non-parametric learning methods that adjust the Laplacian's spectrum promise better performance. For instance, adjusting the graph Laplacian using kernel target alignment (KTA) yields better performance when an SVM is trained on the resulting kernel. KTA relies on a simple surrogate criterion to choose the kernel; the obtained kernel is then fed to a large margin classification algorithm. In this paper, we propose novel formulations that jointly optimize relative margin and the spectrum of a kernel defined via Laplacian eigenmaps. The large relative margin case is in fact a strict generalization of the large margin case. The proposed methods show significant empirical advantage over numerous other competing methods. © 2010 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Shivaswamy, P. K., & Jebara, T. (2010). Laplacian spectrum learning. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6323 LNAI, pp. 261–276). https://doi.org/10.1007/978-3-642-15939-8_17

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free