microRNAs (miRNAs) play essential roles in several physiological and pathological processes, including tumor metastasis. Metastasis is associated with poor prognosis in renal carcinoma patients and almost 20-30% of patients present with distant metastasis at the time of diagnosis. The aim of the present study was to investigate the possible roles of miR-200c in regulating metastasis and to identify its target genes in renal cell carcinoma (RCC). Among the miRNAs downregulated in our tissue specimen microarray, miR-200c was downregulated significantly. Functional assays demonstrated that restoration of miR-200c significantly inhibited the migration and invasion of SN12-PM6 and 786-0 cells in vitro. Genome-wide gene expression analysis and TargetScan database studies showed that ZEB1, which has been shown to promote tumor invasion and migration through E-cadherin gene silencing, is a promising candidate target gene of miR-200c. Overexpression of miR-200c in SN12-PM6 and 786-0 cells was concurrent with downregulation of ZEB1 and upregulation of E-cadherin mRNA and protein. In addition, miR-200c affected the protein expression of p-Akt and Akt. Thus, our study demonstrated that miR-200c decreases the metastatic ability of renal carcinoma cells by upregulating E-cadherin through ZEB1 and that modulating the expression of miR-200c could influence Akt protein levels. We therefore concluded that there is an Akt-miR-200c-E-cadherin axis in the epithelial-to-mesenchymal transition process in RCC.
CITATION STYLE
Wang, X., Chen, X., Wang, R., Xiao, P., Xu, Z., Chen, L., … Zhang, X. (2013). microRNA-200c modulates the epithelial-to-mesenchymal transition in human renal cell carcinoma metastasis. Oncology Reports, 30(2), 643–650. https://doi.org/10.3892/or.2013.2530
Mendeley helps you to discover research relevant for your work.