Gnidia glauca (Fresen.) Gilg has demonstrated significant anticancer potential through multiple mechanisms, including apoptosis induction, as shown by the TUNEL assay against MCF-7 cells, modulation of tubulin polymerization, preservation of mitochondrial function indicated by the JC-1 assay, and inhibition of DNA polymerase α and β activities. Rationale for the present study is to investigate the potential anticancer properties of G. glauca leaf alkaloid extract. Fresh and healthy G. glauca leaves were cleaned, shade-dried, and the powder was defatted, extracted with 10% acetic acid in ethanol, and subjected for alkaloid extraction. The partially purified G. glauca leaf alkaloid extract was evaluated for its effects on tubulin polymerization, DNA polymerase activity, mitochondrial membrane potential, and apoptosis studies using human breast cancer (MCF-7) cells by flow cytometry. The extract was found to affect microtubule assembly in a concentration-dependent manner (15.125-250 μg/mL), indicating presence of alkaloids that function as spindle poison agents. Leaf alkaloid extract of G. glauca was also found to affect the mitochondrial membrane potential with IC50 value 144.51 μg/mL, and inhibited DNA polymerase α and β activities dose dependently, thus potentially interfering with DNA replication and repair processes. Leaf alkaloid extract also showed the potential to induce DNA damage of 53.6%, albeit somewhat less than the standard drug camptothecin (64.94%) as confirmed by the TUNEL assay. Additionally, the GgLAE (IC50 144.51 μg/mL) showed significant inhibition of MCF-7 cells proliferation after 24 h, revealing phase arrests in sub G0/G1, S, and G2/M. These findings suggest that G. glauca leaf alkaloid extract contains alkaloids that possess anticancer properties with multiple targets, making the plant a natural source for a promising phytochemical drug candidates for further evaluation in pre-clinical and clinical studies. Further investigations are warranted to determine the efficacy, safety, identification and characterization of the alkaloids, and evaluate and determine their potential applications in cancer therapy.
CITATION STYLE
Valleti, P. V., Kumar, V., Ramayanam, P. K., Gopalappa, R., Vijendra Dittekoppa, P., Cm, A., … Al-Farraj, S. (2024). Multifaceted Anticancer Potential of Gnidia glauca (Fresen.) Gilg Leaf Alkaloids: Impact on Multiple Cellular Targets. ACS Omega, 9(8), 9615–9624. https://doi.org/10.1021/acsomega.3c09578
Mendeley helps you to discover research relevant for your work.