Purpose: This study aims to identify clusters amongst the county housing markets in Poland, taking into account the criteria of size and quality of the housing stock, as well as price level. In addition, this work is intended to detect the socio-economic factors driving the cluster formation. Design/methodology/approach: To group the studied housing markets into homogeneous clusters, this analysis uses a proprietary algorithm based on taxonomic and k-means++ methods. In turn, the generalised ordered logit (gologit) model was used to explore factors influencing the cluster formation. Findings: The results obtained revealed that Polish county housing markets can be classified into three or four homogeneous clusters in terms of the size and quality of the housing stock and price level. Furthermore, the results of the estimation of the gologit models indicated that population density, number of business entities and the level of crime mainly determine the membership of a given housing market in a given cluster. Originality/value: In contrast to previous studies, this is the first to examine the existence of homogeneous clusters amongst the county housing markets in Poland, taking into account the criteria of size and quality of the housing stock, as well as price level simultaneously. Moreover, this work is the first to identify the driving forces behind the formation of clusters amongst the surveyed housing markets.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Tomal, M. (2021). Housing market heterogeneity and cluster formation: evidence from Poland. International Journal of Housing Markets and Analysis, 14(5), 1166–1185. https://doi.org/10.1108/IJHMA-09-2020-0114