Thermodynamic Stability and Structural Insights for CH3NH3Pb1−xSixI3, CH3NH3Pb1−xGexI3, and CH3NH3Pb1−xSnxI3 Hybrid Perovskite Alloys: A Statistical Approach from First Principles Calculations

14Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The recent reaching of 20% of conversion efficiency by solar cells based on metal hybrid perovskites (MHP), e.g., the methylammonium (MA) lead iodide, CH3NH3PbI3 (MAPbI3), has excited the scientific community devoted to the photovoltaic materials. However, the toxicity of Pb is a hindrance for large scale commercial of MHP and motivates the search of another congener eco-friendly metal. Here, we employed first-principles calculations via density functional theory combined with the generalized quasichemical approximation to investigate the structural, thermodynamic, and ordering properties of MAPb1−xSixI3, MAPb1−xGexI3, and MAPb1−xSnxI3 alloys as pseudo-cubic structures. The inclusion of a smaller second metal, as Si and Ge, strongly affects the structural properties, reducing the cavity volume occupied by the organic cation and limitating the free orientation under high temperature effects. Unstable and metaestable phases are observed at room temperature for MAPb1−xSixI3, whereas MAPb1−xGexI3 is energetically favored for Pb-rich in ordered phases even at very low temperatures. Conversely, the high miscibility of Pb and Sn into MAPb1−xSnxI3 yields an alloy energetically favored as a pseudo-cubic random alloy with tunable properties at room temperature.

Cite

CITATION STYLE

APA

Guedes-Sobrinho, D., Guilhon, I., Marques, M., & Teles, L. K. (2019). Thermodynamic Stability and Structural Insights for CH3NH3Pb1−xSixI3, CH3NH3Pb1−xGexI3, and CH3NH3Pb1−xSnxI3 Hybrid Perovskite Alloys: A Statistical Approach from First Principles Calculations. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47192-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free