MultiDCoX: Multi-factor analysis of differential co-expression

4Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Differential co-expression (DCX) signifies change in degree of co-expression of a set of genes among different biological conditions. It has been used to identify differential co-expression networks or interactomes. Many algorithms have been developed for single-factor differential co-expression analysis and applied in a variety of studies. However, in many studies, the samples are characterized by multiple factors such as genetic markers, clinical variables and treatments. No algorithm or methodology is available for multi-factor analysis of differential co-expression. Results: We developed a novel formulation and a computationally efficient greedy search algorithm called MultiDCoX to perform multi-factor differential co-expression analysis. Simulated data analysis demonstrates that the algorithm can effectively elicit differentially co-expressed (DCX) gene sets and quantify the influence of each factor on co-expression. MultiDCoX analysis of a breast cancer dataset identified interesting biologically meaningful differentially co-expressed (DCX) gene sets along with genetic and clinical factors that influenced the respective differential co-expression. Conclusions: MultiDCoX is a space and time efficient procedure to identify differentially co-expressed gene sets and successfully identify influence of individual factors on differential co-expression.

Cite

CITATION STYLE

APA

Liany, H., Rajapakse, J. C., & Karuturi, R. K. M. (2017). MultiDCoX: Multi-factor analysis of differential co-expression. BMC Bioinformatics, 18. https://doi.org/10.1186/s12859-017-1963-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free