Rigid body orientation determined by IMU (Inertial Measurement Unit) is widely applied in robotics, navigation, rehabilitation, and human-computer interaction. In this paper, aiming at dynamically fusing quaternions computed from angular rate integration and FQA algorithm, a quaternion-based complementary filter algorithm is proposed to support a computationally efficient, wearable motion-tracking system. Firstly, a gradient descent method is used to determine a function from several sample points. Secondly, this function is used to dynamically estimate the fusion coefficient based on the deviation between measured magnetic field, gravity vectors and their references in Earth-fixed frame. Thirdly, a test machine is designed to evaluate the performance of designed filter. Experimental results validate the filter design and show its potential of real-time human motion tracking.
CITATION STYLE
Yi, C., Ma, J., Guo, H., Han, J., Gao, H., Jiang, F., & Yang, C. (2018). Estimating three-dimensional body orientation based on an improved complementary filter for human motion tracking. Sensors (Switzerland), 18(11). https://doi.org/10.3390/s18113765
Mendeley helps you to discover research relevant for your work.