The contamination of surface and groundwater with phosphate originating from industrial, agricultural and household wastewater remains a serious environmental issue in low-income countries. Currently, demolished concrete is mainly recycled as aggregate for reconstruction and conventional wastewater treatment systems for removing phosphate are expensive and complex. In this study, we were aiming at testing crushed concrete as an efficient adsorbent for the removal of phosphate from aqueous solutions, obtained from the demolition of construction site. It can reduce pollution and landfill disposal by converting construction waste into valuable products and an alternative solution for phosphate removal. Batch adsorption experiments were conducted using phosphate solutions to examine the adsorption kinetic as well as equilibrium conditions. Results show that the phosphate adsorption of all absorbents follows the adsorption isotherms with a varying phosphate concentration from 3 mg/L to 18 mg/L, and the adsorption isotherms data are fitted well by Langmuir equation as compared with the Freundlich isotherm. The maximum phosphate adsorption (97.67 %) was obtained at a contact time of 120 min, an initial phosphate concentration of 10 mg/L, and a solution pH of 4. The pseudo second-order equation describes the experimental data has good agreement, with a correlation value of R2 = 0.99. The results obtained indicate that the environmentally available crushed concrete have a good adsorptive capacity for phosphate and shall be considered in future studies as test materials for phosphate removal from water in technical-scale experiment.
CITATION STYLE
Abetu, A. G., & Kebede, A. B. (2021). CRUSHED CONCRETE AS ADSORPTIVE MATERIAL FOR REMOVAL OF PHOSPHATE IONS FROM AQUEOUS SOLUTIONS. Water Conservation and Management, 5(2), 58–64. https://doi.org/10.26480/wcm.02.2021.58.64
Mendeley helps you to discover research relevant for your work.