Synthesis of Aliphatic Polyanhydrides with Controllable and Reproducible Molecular Weight

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Polyanhydrides have been synthesized for decades by melt-polycondensation of diacid monomers and 5 to >10 times mole excess acetic anhydride to diacid monomers to form polymers with a polydispersity ranging from 2.5 to 6 and low reproducibility. Hydrophobic segments in polyanhydrides are beneficial to hinder the characteristic hydrolytic cleavage of an anhydride bond that provides stable polyanhydrides at room temperature. The objective of this work is to synthe-size aliphatic polyanhydrides with various hydrophobic segments, controllable and reproducible molecular weight, and low polydispersity that are essential for potential use as drug carriers. A series of polyanhydrides of suberic, azelaic, sebacic, and dodecanedioic acids with controlled molecular weight, reduced polydispersity, and standard deviation of molecular weights, have been synthe-sized. All synthesized polyanhydrides were thoroughly characterized by NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography. Molecular weights of the synthesized polyanhydrides are highly controllable, depending on the degree of activation of the dicarboxylic acid monomers, i.e., the amount of acetic anhydride used during synthesis. Polyanhydrides have been synthesized in triplicate by melt-polycondensation, using various mole ratios of acetic anhy-dride to diacids. The standard deviation of the molecular weights of the polyanhydrides is minute when using 1 equivalent of acetic anhydride during the activation of dicarboxylic acids, whereas if excess acetic anhydride is used, the standard deviation is very high. The effect of safe and natural inorganic catalysts, Calcium oxide, Zinc oxide, and Calcium carbonate on polymerization is also studied. As-synthesized poly(sebacic acid) can offer convenience to use in controlled drug delivery applications. In vitro drug release study using Temozolamide (TMZ), a medication used to treat brain tumors such as glioblastoma and anaplastic astrocytoma, shows 14% TMZ release after the first hour and 70% release over one day from the poly(sebacic acid) wafers.

Cite

CITATION STYLE

APA

Ghosh, R., Arun, Y., Siman, P., & Domb, A. J. (2022). Synthesis of Aliphatic Polyanhydrides with Controllable and Reproducible Molecular Weight. Pharmaceutics, 14(7). https://doi.org/10.3390/pharmaceutics14071403

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free