Protease-Sensitive Inhibitory Activity of Cell-free Supernatant of Lactobacillus crispatus 156 Synergizes with Ciprofloxacin, Moxifloxacin and Streptomycin Against Pseudomonas aeruginosa: An In Vitro Study

11Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Ciprofloxacin and streptomycin are frequently prescribed for the treatment of medical conditions originating due to infection by Pseudomonas aeruginosa. However, fluoroquinolone administration has been linked to the outgrowth of Clostridium difficile pathogen, especially in immunocompromised patients. Secondly, frequent administration of antibiotics may lead to development of resistance in the pathogens. Thus, there is a need to explore innovative adjunct therapies to lower the therapeutic doses of the antibiotics. Herein, we evaluated the synergism, if any, between conventional antibiotics and the cell-free supernatant (CFS) of vaginal Lactobacillus crispatus 156 against P. aeruginosa MTCC 741. L. crispatus 156 was isolated from the human vaginal tract, and its CFS had broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative pathogens, including P. aeruginosa. The inhibitory substance present in the CFS completely lost its activity after treatment with proteinases and was resistant to temperatures up to 80 °C and pH ranging from 2 to 6. The cumulative production of the inhibitory substance in CFS was studied, and it showed that the secretion of the inhibitory substance was initiated in middle log phase of growth and peaked in late log phase. Further, CFS synergized the activities of ciprofloxacin, moxifloxacin, and streptomycin as evaluated in terms of checkerboard titrations. It lowered the minimum inhibitory concentration (MIC) of ciprofloxacin by almost 30 times and MIC of both moxifloxacin and streptomycin by 8 times. Interestingly, pepsin treatment of CFS caused the complete abrogation of its synergistic effect with all the three antibiotics. Thus, from the study, it can be concluded that probiotic-based alternative therapeutic regimen can be designed for the treatment of P. aeruginosa infections.

Cite

CITATION STYLE

APA

Kaur, S., & Sharma, P. (2015). Protease-Sensitive Inhibitory Activity of Cell-free Supernatant of Lactobacillus crispatus 156 Synergizes with Ciprofloxacin, Moxifloxacin and Streptomycin Against Pseudomonas aeruginosa: An In Vitro Study. Probiotics and Antimicrobial Proteins, 7(2), 172–180. https://doi.org/10.1007/s12602-015-9188-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free