Plasma activated water has shown great promise in a number of emerging application domains; yet the interaction between non-equilibrium plasma and liquid represents a complex multiphase process that is difficult to probe experimentally, necessitating the development of accurate numerical models. In this work, a global computational model was developed to follow the concentrations of aqueous reactive species in water treated using a surface barrier discharge in ambient air. While the two-film theory has long superseded other methods of modelling mass transfer in such areas of research as environmental and aerosol science, plasma modelling studies continue to use equilibrium and one-film theories. The transport of reactive species across the gas–liquid interface was therefore treated using the one-film and two-film theories, with the results compared to ascertain which is most appropriate for PAW modelling studies. Comparing the model-predicted concentrations to those measured, it was shown that concentrations of aqueous H+ and NO3− ions were better represented by the two-film theory, more closely fitting experimental measurements in trend and in magnitude by a factor of ten, while HNO2 and NO2− showed a slightly worse fit using this theory. This is attributed to the assumption in two-film theory of a gas-phase stagnant film which provides additional resistance to the absorption of hydrophilic species, which is absent in the one-film theory, which could be improved with a more accurate value of the Sherwood number for each species.
CITATION STYLE
Silsby, J. A., Simon, S., Walsh, J. L., & Hasan, M. I. (2021). The Influence of Gas–Liquid Interfacial Transport Theory on Numerical Modelling of Plasma Activation of Water. Plasma Chemistry and Plasma Processing, 41(5), 1363–1380. https://doi.org/10.1007/s11090-021-10182-7
Mendeley helps you to discover research relevant for your work.