Predicting antibody neutralization efficacy in hypermutated epitopes using monte carlo simulations

0Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Human Immunodeficiency Virus 1 (HIV-1) evades adaptive immunity by means of its extremely high mutation rate, which allows the HIV envelope glycoprotein to continuously escape from the action of antibodies. However, some broadly neutralizing antibodies (bNAbs) targeting specific viral regions show the ability to block the infectivity of a large number of viral variants. The discovery of these antibodies opens new avenues in anti-HIV therapy; however, they are still suboptimal tools as their amplitude of action ranges between 50% and 90% of viral variants. In this context, being able to discriminate between sensitive and resistant strains to an antibody would be of great interest for the design of optimal clinical antibody treatments and to engineer potent bNAbs for clinical use. Here, we describe a hierarchical procedure to predict the antibody neutralization efficacy of multiple viral isolates to three well-known anti-CD4bs bNAbs: VRC01, NIH45-46 and 3BNC117. Our method consists of simulating the three-dimensional binding process between the gp120 and the antibody by using Protein Energy Landscape Exploration (PELE), a Monte Carlo stochastic approach. Our results clearly indicate that the binding profiles of sensitive and resistant strains to a bNAb behave differently, showing the latter’s weaker binding profiles, that can be exploited for predicting antibody neutralization efficacy in hypermutated HIV-1 strains.

Cite

CITATION STYLE

APA

Amengual-Rigo, P., Carrillo, J., Blanco, J., & Guallar, V. (2020). Predicting antibody neutralization efficacy in hypermutated epitopes using monte carlo simulations. Polymers, 12(10), 1–15. https://doi.org/10.3390/polym12102392

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free