Algorithm for Mobile Platform-Based Real-Time QRS Detection

10Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Recent advancements in smart, wearable technologies have allowed the detection of various medical conditions. In particular, continuous collection and real-time analysis of electrocardiogram data have enabled the early identification of pathologic cardiac rhythms. Various algorithms to assess cardiac rhythms have been developed, but these utilize excessive computational power. Therefore, adoption to mobile platforms requires more computationally efficient algorithms that do not sacrifice correctness. This study presents a modified QRS detection algorithm, the AccYouRate Modified Pan–Tompkins (AMPT), which is a simplified version of the well-established Pan–Tompkins algorithm. Using archived ECG data from a variety of publicly available datasets, relative to the Pan–Tompkins, the AMPT algorithm demonstrated improved computational efficiency by 5–20×, while also universally enhancing correctness, both of which favor translation to a mobile platform for continuous, real-time QRS detection.

Cite

CITATION STYLE

APA

Neri, L., Oberdier, M. T., Augello, A., Suzuki, M., Tumarkin, E., Jaipalli, S., … Borghi, C. (2023). Algorithm for Mobile Platform-Based Real-Time QRS Detection. Sensors, 23(3). https://doi.org/10.3390/s23031625

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free