Flow through a circular tube with a permeable Navier slip boundary

20Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

For Newtonian fluid flow in a right circular tube, with a linear Navier slip boundary, we show that a second flow field arises which is different to conventional Poiseuille flow in the sense that the corresponding pressure is quadratic in its dependence on the length along the tube, rather than a linear dependence which applies for conventional Poiseuille flow. However, assuming that the quadratic pressure is determined, say from known experimental data, then the new solution only exists for a precisely prescribed permeability along the boundary. While this cannot occur for conventional pipe flow, for fluid flow through carbon nanotubes embedded in a porous matrix, it may well be an entirely realistic possibility, and could well explain some of the high flow rates which have been reported in the literature. Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure. Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions. The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary. © 2011 Cox and Hill.

Cite

CITATION STYLE

APA

Cox, B. J., & Hill, J. M. (2011). Flow through a circular tube with a permeable Navier slip boundary. Nanoscale Research Letters, 6, 1–9. https://doi.org/10.1186/1556-276X-6-389

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free