Web-based spine segmentation using deep learning in computed tomography images

42Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

Objectives: Back pain, especially lower back pain, is experienced in 60% to 80% of adults at some points during their lives. Various studies have found that lower back pain is a very common problem among adolescents, and the highest incidence rates are for adults in their 30s. There has been a remarkable increase in using computer-aided diagnosis to assist doctors in the interpretation of medical images. Spine segmentation in computed tomography (CT) scans using algorithmic methods allows improved diagnosis of back pain. Methods: In this study, we developed a web-based automatic spine segmentation method using deep learning and obtained the dice coefficient by comparison with the predicted image. Our method is based on convolutional neural networks for segmentation. More specifically, we train a hierarchical data format file using U-Net architecture and then insert the test data label to perform segmentation. Thus, we obtained more specific and detailed results. A total of 344 CT images were used in the experiment. Of these, 330 were used for learning, and the remaining 14 for testing. Results: Our method achieved an average dice coefficient of 90.4%, a precision of 96.81%, and an F1-score of 91.64%. Conclusions: The proposed web-based deep learning approach can be very practical and accurate for spine segmentation as a diagnostic method.

Cite

CITATION STYLE

APA

Kim, Y. J., Ganbold, B., & Kim, K. G. (2020). Web-based spine segmentation using deep learning in computed tomography images. Healthcare Informatics Research, 26(1), 61–67. https://doi.org/10.4258/hir.2020.26.1.61

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free