Moving object detection and shadow removing under changing illumination condition

21Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Moving object detection is a fundamental step in video surveillance system. To eliminate the influence of illumination change and shadow associated with the moving objects, we proposed a local intensity ratio model (LIRM) which is robust to illumination change. Based on the analysis of the illumination and shadow model, we discussed the distribution of local intensity ratio. And the moving objects are segmented without shadow using normalized local intensity ratio via Gaussian mixture model (GMM). Then erosion is used to get the moving objects contours and erase the scatter shadow patches and noises. After that, we get the enhanced moving objects contours by a new contour enhancement method, in which foreground ratio and spatial relation are considered. At last, a new method is used to fill foreground with holes. Experimental results demonstrate that the proposed approach can get moving objects without cast shadow and shows excellent performance under various illumination change conditions. © 2014 Jinhai Xiang et al.

Cite

CITATION STYLE

APA

Xiang, J., Fan, H., Liao, H., Xu, J., Sun, W., & Yu, S. (2014). Moving object detection and shadow removing under changing illumination condition. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/827461

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free