Ab initio results for the plasmon dispersion and damping of the warm dense electron gas

30Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Warm dense matter (WDM) is an exotic state on the border between condensed matter and dense plasmas. Important occurrences of WDM include dense astrophysical objects, matter in the core of our Earth, and matter produced in strong compression experiments. As of late, x-ray Thomson scattering has become an advanced tool to diagnose WDM. The interpretation of the data requires model input for the dynamic structure factor S(q, ω) and the plasmon dispersion ω(q). Recently, the first ab initio results for S(q, ω) of the homogeneous warm dense electron gas were obtained from path integral Monte Carlo simulations (Dornheim et al., Phys. Rev. Lett., 121, 255001, 2018). Here, we analyse the effects of correlations and finite temperature on the dynamic dielectric function and the plasmon dispersion. Our results for the plasmon dispersion and damping differ significantly from the random-phase approximation and from earlier models of the correlated electron gas. Moreover, we show when commonly used weak damping approximations break down and how the method of complex zeroes of the dielectric function can solve this problem for WDM conditions.

Cite

CITATION STYLE

APA

Hamann, P., Vorberger, J., Dornheim, T., Moldabekov, Z. A., & Bonitz, M. (2020). Ab initio results for the plasmon dispersion and damping of the warm dense electron gas. Contributions to Plasma Physics, 60(10). https://doi.org/10.1002/ctpp.202000147

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free