A multiple model assessment of seasonal climate forecast skill for applications

  • Lavers D
  • Luo L
  • Wood E
N/ACitations
Citations of this article
70Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Skilful seasonal climate forecasts have potential to affect decision making in agriculture, health and water management. Organizations such as the National Oceanic and Atmospheric Administration (NOAA) are currently planning to move towards a climate services paradigm, which will rest heavily on skilful forecasts at seasonal (1 to 9 months) timescales from coupled atmosphere‐land‐ocean models. We present a careful analysis of the predictive skill of temperature and precipitation from eight seasonal climate forecast models with the joint distribution of observations and forecasts. Using the correlation coefficient, a shift in the conditional distribution of the observations given a forecast can be detected, which determines the usefulness of the forecast for applications. Results suggest there is a deficiency of skill in the forecasts beyond month‐1, with precipitation having a more pronounced drop in skill than temperature. At long lead times only the equatorial Pacific Ocean exhibits significant skill. This could have an influence on the planned use of seasonal forecasts in climate services and these results may also be seen as a benchmark of current climate prediction capability using (dynamic) couple models.

Cite

CITATION STYLE

APA

Lavers, D., Luo, L., & Wood, E. F. (2009). A multiple model assessment of seasonal climate forecast skill for applications. Geophysical Research Letters, 36(23). https://doi.org/10.1029/2009gl041365

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free