Secondary batteries have been widespread in the daily life causing an ever-growing demand for long-cycle lifespan and high-energy alkali-ion batteries. As an essential constituent part, electrode materials with superior electrochemical properties play a vital role in the battery systems. Here, an outstanding electrode of yolk–shell ZnS@C nanorods is developed, introducing considerable void space via a self-sacrificial template method. Such carbon encapsulated nanorods moderate integral electronic conductivity, thus ensuring rapid alkali-ions/electrons transporting. Furthermore, the porous structure of these nanorods endows enough void space to mitigate volume stress caused by the insertion/extraction of alkali-ions. Due to the unique structure, these yolk–shell ZnS@C nanorods achieve superior rate performance and cycling performance (740 mAh g−1 at 1.0 A g−1 after 540 cycles) for lithium-ion batteries. As a potassium-ion batteries anode, they achieve an ultra-long lifespan delivering 211.1 mAh g−1 at 1.0 A g−1 after 5700 cycles. The kinetic analysis reveals that these ZnS@C nanorods with considerable pseudocapacitive contribution benefit the fast lithiation/delithiation. Detailed transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses indicate that such yolk–shell ZnS@C anode is a typical reversible conversion reaction mechanism accomplished by alloying processes. This rational design strategy opens a window for the development of superior energy storage materials.
CITATION STYLE
Xu, X., Li, F., Zhang, D., Liu, Z., Zuo, S., Zeng, Z., & Liu, J. (2022). Self-Sacrifice Template Construction of Uniform Yolk–Shell ZnS@C for Superior Alkali-Ion Storage. Advanced Science, 9(14). https://doi.org/10.1002/advs.202200247
Mendeley helps you to discover research relevant for your work.