Background: Both hypoxia preconditioning and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exo) have been adopted to alleviate hair-loss-related ototoxicity. Whether hypoxic BMSCs-derived exosomes (hypBMSC-Exo) could alleviate cisplatin-induced ototoxicity is investigated in this study. Methods: Cisplatin intraperitoneally injected C57BL/6 mice were trans-tympanically administered BMSC-Exo or hypBMSC-Exo in the left ear. Myosin 7a staining was utilized to detect mature hair cells. Auditory brainstem response (ABR) was assessed to indicate auditory sensitivity at 8, 16, 24, and 32 kHz. The relative expressions of hypoxia-inducible factor-1α (HIF-1α), superoxide dismutase 1 (SOD1), and SOD2 were determined with RT-PCR and Western blot. The content of hydrogen peroxide (H2O2), malondialdehyde (MDA), SOD, and glutathione (GSH) in the middle turns of the cochlea were measured. Results: Up-regulated HIF-1α expression was observed in hypBMSC-Exo compared with BMSC-Exo. Diminished auditory sensitivity and increased hair cell loss was observed in the cisplatin-exposed mice with increased content of H2O2 and MDA and decreased content of SOD and GSH, which could be reversed by hypBMSC-Exo or BMSC-Exo administration. It is worth noting that hypBMSC-Exo demonstrated more treatment benefits than BMSC-Exo with up-regulated SOD1 and SOD2 expression in the middle turns of the cochlea tissues. Conclusions: Hypoxic preconditioning may provide a new therapeutic option in regenerative medicine, and hypBMSC-Exo could be utilized to alleviate cisplatin-induced ototoxicity.
CITATION STYLE
Yang, T., Li, W., Peng, A., Liu, J., & Wang, Q. (2022). Exosomes Derived from Bone Marrow-Mesenchymal Stem Cells Attenuates Cisplatin-Induced Ototoxicity in a Mouse Model. Journal of Clinical Medicine, 11(16). https://doi.org/10.3390/jcm11164743
Mendeley helps you to discover research relevant for your work.