N2O emissions of a mature Norway spruce (Picea abies) stand in the Black Forest (southwest Germany) as differentiated by the soil pattern

50Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nitrous oxide is a greenhouse gas contributing to stratospheric ozone depletion with major sources that derive from soils. Most measurements were performed at well-aerated or anaerobic sites, excluding common hydromorphic soils (e.g., Gleysols). The main thesis of this study was that the intermediate aeration of such soils promotes N2O emissions. The investigated catena "Wildmooswald," which is little more than 200 m long, includes common temperate forest soils (n = 7) of three aeration categories (Cambisols, Gleysols, and Histosol). The influence of fluctuating water tables of the Gleysols led to distinctively higher N2O release compared to the Cambisol within the same mature Norway spruce ecosystem. Even a stable "hot spot" of N2O emissions was detected at a Histosol, where artificial drainage created a redox environment comparable to the Gleysols. Ranking the soils according to emission rate results in fairly regular doubling steps; for example, mean annual flux rates in kg N ha-1 yr-1 for the 2.5 years of measurements were -0.1, 0.4, 1.0, 1.9/1.9, 3.2, and 6.4 for Fibric Histosol, Chromic Cambisol, Endoskeletic Cambisol, Histic Gleysol 1/2, Humic Gleysol, and Sapric Histosol, respectively. The annual emission rates (0.93 kg N ha-1 yr-1) of the predominant Cambisols (63.4% of the area) are comparable to other studies, but only 34.3% of intermediately aerated soils led to a redoubling of the average to 1.86 kg N ha-1 yr-1, which is clearly higher than previously presented from temperate forests. Therefore N2O releases of soils are underestimated if soils having intermediate aeration conditions are left unconsidered. Copyright 2004 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Jungkunst, H. F., Fiedler, S., & Stahr, K. (2004). N2O emissions of a mature Norway spruce (Picea abies) stand in the Black Forest (southwest Germany) as differentiated by the soil pattern. Journal of Geophysical Research: Atmospheres, 109(7). https://doi.org/10.1029/2003jd004344

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free