The circular economy has become an important topic in the building industry, and life cycle assessment (LCA) is often used to quantify its benefits. Through chemical analysis, this article demonstrates that the current LCA is not yet well-adapted to assess the circular economy of building materials and components. It is shown that current inventory data and models are insufficient because they do not consider the uptake and emission of chemicals during use, the migration of chemicals within the value chain across the multiple phases in the circular economy, and because current characterization models lack a large fraction of the potentially emitted chemicals from said uptake and emission identified in the tested building material samples. Thus, it is shown that impacts relevant for LCA in the circular economy of buildings remain unaddressed because they are currently either omitted in the LCA that covers a limited number of impact indicators, or are ostensibly covered in the LCA covering a full set of indicators but missed due to inadequate characterization models. To ameliorate this, a definition of embedded toxicity and its relationship to the toxicological footprint is presented and a method for measurement is proposed, illustrating how assessing embedded toxicity can yield information for facilitating safe building-material reuse. Finally, a suggestion for the improvement of life cycle impact assessment methods is proposed.
CITATION STYLE
Egemose, C. W., Bastien, D., Fretté, X., Birkved, M., & Sohn, J. L. (2022). Human Toxicological Impacts in Life Cycle Assessment of Circular Economy of the Built Environment: A Case Study of Denmark. Buildings, 12(2). https://doi.org/10.3390/buildings12020130
Mendeley helps you to discover research relevant for your work.