Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy

18Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by abnormal cellular differentiation and maturation with variable progression to acute leukemia. Over the last decade, scientific discoveries have unraveled specific pathways involved in the complex pathophysiology of MDS. Prominent examples include aberrations in cytokines and their signaling pathways (such as tumor necrosis factor-alpha, interferon-gamma, SMAD proteins), mutations in genes encoding the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, and U2AF1 genes), mutations in genes disrupting the epigenetic machinery (TET2, DNMT3A, DNMT3B, EZH2, ASXL1). In addition, abnormalities in regulatory T-cell dynamics and atypical interactions between the bone marrow microenvironment, stroma and progenitor cells, and abnormal maintenance of telomeres are also notable contributors to the complex pathogenesis of MDS. These pathways represent potential targets for novel therapies. Specific therapies include drugs targeting aberrant DNA methylation and chromatin remodeling, modulating/activating the immune system to enhance tumor-specific cellular immune responses and reduce anomalous cytokine signaling, and blocking abnormal interaction between hematopoietic progenitors and stromal cells.

Cite

CITATION STYLE

APA

Zahid, M. F., Patnaik, M. M., Gangat, N., Hashmi, S. K., & Rizzieri, D. A. (2016, October 1). Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. European Journal of Haematology. Blackwell Publishing Ltd. https://doi.org/10.1111/ejh.12771

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free