Fragile X syndrome (FXS), a common inherited form of intellectual disability with learning deficits, results from a loss of fragile X mental retardation protein (FMRP). Despite extensive research, treatment options for FXS remain limited. Since FMRP is known to play an important role in adult hippocampal neurogenesis and hippocampus-dependent learning and FMRP regulates the adult neural stem cell fate through the translational regulation of glycogen synthase kinase 3β (GSK3β), we investigated the effects of a GSK3β inhibitor, SB216763, on Fmr1 knockout mice (Fmr1 KO). We found that the inhibition of GSK3β could reverse the hippocampus-dependent learning deficits and rescue adult hippocampal neurogenesis at multiple stages in Fmr1 KO mice. Our results point to GSK3β inhibition as a potential treatment for the learning deficits seen in FXS. © The Author 2011. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Guo, W., Murthy, A. C., Zhang, L., Johnson, E. B., Schaller, E. G., Allan, A. M., & Zhao, X. (2012). Inhibition of GSK3β improves hippocampusdependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Human Molecular Genetics, 21(3), 681–691. https://doi.org/10.1093/hmg/ddr501
Mendeley helps you to discover research relevant for your work.