Given the recent successes of Deep Learning in AI there has been increased interest in the role and need for explanations in machine learned theories. A distinct notion in this context is that of Michie’s definition of ultra-strong machine learning (USML). USML is demonstrated by a measurable increase in human performance of a task following provision to the human of a symbolic machine learned theory for task performance. A recent paper demonstrates the beneficial effect of a machine learned logic theory for a classification task, yet no existing work to our knowledge has examined the potential harmfulness of machine’s involvement for human comprehension during learning. This paper investigates the explanatory effects of a machine learned theory in the context of simple two person games and proposes a framework for identifying the harmfulness of machine explanations based on the Cognitive Science literature. The approach involves a cognitive window consisting of two quantifiable bounds and it is supported by empirical evidence collected from human trials. Our quantitative and qualitative results indicate that human learning aided by a symbolic machine learned theory which satisfies a cognitive window has achieved significantly higher performance than human self learning. Results also demonstrate that human learning aided by a symbolic machine learned theory that fails to satisfy this window leads to significantly worse performance than unaided human learning.
CITATION STYLE
Ai, L., Muggleton, S. H., Hocquette, C., Gromowski, M., & Schmid, U. (2021). Beneficial and harmful explanatory machine learning. Machine Learning, 110(4), 695–721. https://doi.org/10.1007/s10994-020-05941-0
Mendeley helps you to discover research relevant for your work.