An algorithm for finding biologically significant features in microarray data based on A Priori manifold learning

Citations of this article
Mendeley users who have this article in their library.


Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes problems when using machine learning methods. A popular approach to this problem is to search for a set of features that will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature extraction is principal component analysis (PCA) which assumes a multivariate Gaussian model of the data. More recently, non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is not used in, and does not bias the classification process-it merely acts as an aid to find the best space in which to search the data. In our experiments we have found that using our new manifold method gives better classification results than using either PCA or conventional Isomap. © 2014 Hira et al.




Hira, Z. M., Trigeorgis, G., & Gillies, D. F. (2014). An algorithm for finding biologically significant features in microarray data based on A Priori manifold learning. PLoS ONE, 9(3).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free