Critical temperature-humidity index thresholds based on surface temperature for lactating dairy cows in a temperate climate

9Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Detecting the early signs of heat stress is highly important in dairy farming. The surface temperature (ST) of cattle can reflect their thermal status and using such a measuring method can be efficient and non-invasive. However, few studies have reported the temperature-humidity index (THI) thresholds for ST. This study aimed to identify the critical THI thresholds for the ST of dairy cows and to evaluate the effects of the lactation stage and the lactation number. The study included 233 Holstein lactating cows from July 2020 to October 2020 in a temperate climate in China. There were 1556 records of the rectal temperature, and the maximum ST (STmax) and average ST (STave) of the head, eye, cheek, ear, neck, trunk, udder, foreleg, and hindleg were recorded. Air temperature and relative humidity were recorded to calculate the average THI. Physiological data were collected twice daily (08:00–12:00, 14:00–16:00). The critical THI thresholds were determined using the breakpoints of piecewise linear models. The significance of breakpoints was tested using the Davies test. A one-way ANOVA was used to test the effect of the lactation stage (0–60 DIM, 61–200 DIM, 201– 300 DIM, DIM is days in milk) and the lactation number (1, 2, 3+) on the THI thresholds. The results showed that the rectal temperature was significantly positively correlated with all the ST variables (0.57 ≤ r ≤ 0.71, p < 0.01). The critical THI thresholds for STmax (mean of 76.1 THI, range of 73.6 to 77.9 THI) were significantly higher than those for STave (mean of 72.6 THI, range of 69.1 to 77.2 THI) (p < 0.01). The lactation stage only significantly affected the thresholds for STmax (p < 0.05), and the lactation number did not significantly influence the thresholds for both STmax and STave (p > 0.05). This study concluded that the STave was more appropriate to define thresholds than the STmax. The threshold for the STave of the cheek (69.1 THI) was the lowest among the thresholds, indicating that the STave of the cheek could be a prior ST variable to determine critical THI thresh-olds. Our findings demonstrated the potential of using ST variables to define critical THI thresholds.

Cite

CITATION STYLE

APA

Yan, G., Shi, Z., & Li, H. (2021). Critical temperature-humidity index thresholds based on surface temperature for lactating dairy cows in a temperate climate. Agriculture (Switzerland), 11(10). https://doi.org/10.3390/agriculture11100970

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free