Entanglement across separate silicon dies in a modular superconducting qubit device

60Citations
Citations of this article
116Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures.

Cite

CITATION STYLE

APA

Gold, A., Paquette, J. P., Stockklauser, A., Reagor, M. J., Alam, M. S., Bestwick, A., … Rigetti, C. (2021). Entanglement across separate silicon dies in a modular superconducting qubit device. Npj Quantum Information, 7(1). https://doi.org/10.1038/s41534-021-00484-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free