Laminar burning velocity of Calophyllum inophyllum methyl ester on perforated burner

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Laminar burning velocity is the volume of unburned gas per unit time distributed by the gas consumed. The laminar burning velocity has an important role because it contains basic information about fuel reactivity, diffusivity, and exotherms in the combustion process. In addition, laminar burning velocity is important to identify for calculation in fuel storage explosion protection. This study explains the characteristics of the laminar burning velocity of Calophyllum inophyllum methyl ester using perforated burner method. The fuel used are 0%, 20%, 40%, 60%, 80%, and 100% (B0, B20, B40, B60, B80 and B100) blending fuel of Calophyllum inophyllum methyl ester and petroleum diesel. Fuel rate is 60ml/hour (1ml/minute) using a syringe pump to control which is then evaporated at 180 °C. The observations of laminar burning velocity with variations of equivalent ratio Ø 0.6 to Ø 1.4 using B0 to B100 fuel showed that the value of laminar burning velocity rate continued to decrease along with the increase in the Calophyllum inophyllum methyl ester blending ratio. Blending fuel B20, flame can be observed with variations of Ø 0.6 to Ø 1.4, while in materials on fuel B40, B60, B80, and B100 the flame cannot burn up at equivalent ratio Ø 0.6. Flammability limits of blending B40, B60, B80, and B100 fuels which are only able to burn up at an equivalent ratio of more than 0.6, this phenomenon shows that the maximum ratio of Calophyllum inophyllum methyl ester blending has characteristics approach diesel is the B20 blending ratio. Laminar burning velocity for each equivalent ratio on each fuel continues to decline, even at Ø = 0.6 only B0 and B20 fuels are burned up and observable, while other fuels do not ignite and achieve flammability limits. The increasing biodiesel blend shows the laminar burning velocity in each of the equivalent ratio continues to decline, this is caused by several factors such as density, viscosity, auto ignition, and increasing C-O fuel ratio.

Cite

CITATION STYLE

APA

Bachtiar, H. H., Fachri, B. A., & Ilminnafik, N. (2020). Laminar burning velocity of Calophyllum inophyllum methyl ester on perforated burner. In AIP Conference Proceedings (Vol. 2278). American Institute of Physics Inc. https://doi.org/10.1063/5.0014837

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free