Mechanical properties of urogynecologic implant materials

126Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Synthetic suburethral slings have recently become popular despite the risk of erosion commonly associated with synthetic implants. Some of these materials seem to have unexpectedly low erosion rates. Based on the hypothesis that erosion is due, in part, to biomechanical properties, we undertook an in vitro study. The biomechanical properties of eight non-resorbable synthetic implant materials, stiffness (slope, N/mm) and peak load (N) were determined from load vs. displacement curves. Open-weave Prolene mesh showed unique biomechanical properties compared to other tested materials. The tension- free vaginal tape had the lowest initial stiffness (0.23 N/mm), i.e. low resistance to deformation at forces below the elastic limit, whereas the stiffest implant tested, a nylon tape, reached 6.83 N/mm. We concluded that the TVT and other wide-weave Prolene tapes have unique biomechanical characteristics. These properties may be at least partly responsible for the apparent clinical success of the implants.

Cite

CITATION STYLE

APA

Dietz, H. P., Vancaillie, P., Svehla, M., Walsh, W., Steensma, A. B., & Vancaillie, T. G. (2003). Mechanical properties of urogynecologic implant materials. International Urogynecology Journal, 14(4), 239–243. https://doi.org/10.1007/s00192-003-1041-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free