Coenzyme Qn is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q8 have a significant lifespan extension when compared to C. elegans fed a standard 'Q-replete' E. coli diet. Here we examine possible mechanisms for the lifespan extension caused by the Q-less E. coli diet. A bioassay for Q uptake shows that a water-soluble formulation of Q10 is effectively taken up by both clk-1 mutant and wild-type nematodes, but does not reverse lifespan extension mediated by the Q-less E. coli diet, indicating that lifespan extension is not due to the absence of dietary Q per se. The enhanced longevity mediated by the Q-less E. coli diet cannot be attributed to dietary restriction, different Qn isoforms, reduced pathogenesis or slowed growth of the Q-less E. coli, and in fact requires E. coli viability. Q-less E. coli have defects in respiratory metabolism. C. elegans fed Q-replete E. coli mutants with similarly impaired respiratory metabolism due to defects in complex V also show a pronounced lifespan extension, although not as dramatic as those fed the respiratory deficient Q-less E. coli diet. The data suggest that feeding respiratory incompetent E. coli, whether Q-less or Q-replete, produces a robust life extension in wild-type C. elegans. We believe that the fermentation-based metabolism of the E. coli diet is an important parameter of C. elegans longevity. © 2008 The Authors Journal compilation © 2008 Blackwell Publishing Ltd/The Anatomical Society of Great Britain and Ireland.
CITATION STYLE
Saiki, R., Lunceford, A. L., Bixler, T., Dang, P., Lee, W., Furukawa, S., … Clarke, C. F. (2008). Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q. Aging Cell, 7(3), 291–304. https://doi.org/10.1111/j.1474-9726.2008.00378.x
Mendeley helps you to discover research relevant for your work.