Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides

  • Ako T
  • Hope A
  • Nguyen T
  • et al.
13Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

© 2015 Optical Society of America. We demonstrate electrical tuning of the lateral leakage loss of TM-like modes in nematic liquid crystal (LC) clad shallow-etched Siliconon-Insulator (SOI) waveguides. The refractive index of the LC layer can be modulated by applying a voltage over it. This results in a modulation of the effective index of the SOI waveguide modes. Since the leakage loss is linked to these effective indices, tunable leakage loss of the waveguides is achieved. We switch the wavelength at which the minimum in leakage loss occurs by 39.5nm (from 1564nm to 1524.5nm) in a 785nm wide waveguide. We show that the leakage loss in this waveguide can either be increased or decreased by modulating the refractive index of the LC cladding at a fixed wavelength.

Cite

CITATION STYLE

APA

Ako, T., Hope, A., Nguyen, T., Mitchell, A., Bogaerts, W., Neyts, K., & Beeckman, J. (2015). Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides. Optics Express, 23(3), 2846. https://doi.org/10.1364/oe.23.002846

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free