To achieve rapid on-site identification of raw milk adulteration and simultaneously quantify the levels of various adulterants, we combined Raman spectroscopy with chemometrics to detect 3 of the most common adulterants. Raw milk was artificially adulterated with maltodextrin (0.5–15.0%; wt/wt), sodium carbonate (10–100 mg/kg), or whey (1.0–20.0%; wt/wt). Partial least square discriminant analysis (PLS-DA) classification and a partial least square (PLS) regression model were established using Raman spectra of 144 samples, among which 108 samples were used for training and 36 were used for validation. A model with excellent performance was obtained by spectral preprocessing with first derivative, and variable selection optimization with variable importance in the projection. The classification accuracy of the PLS-DA model was 95.83% for maltodextrin, 100% for sodium carbonate, 95.84% for whey, and 92.25% for pure raw milk. The PLS model had a detection limit of 1.46% for maltodextrin, 4.38 mg/kg for sodium carbonate, and 2.64% for whey. These results suggested that Raman spectroscopy combined with PLS-DA and PLS model can rapidly and efficiently detect adulterants of maltodextrin, sodium carbonate, and whey in raw milk.
CITATION STYLE
Tian, H., Chen, S., Li, D., Lou, X., Chen, C., & Yu, H. (2022). Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics. Journal of Dairy Science, 105(9), 7242–7252. https://doi.org/10.3168/jds.2021-21082
Mendeley helps you to discover research relevant for your work.