The residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery, and Kraft bleaching industries, etc.) are considered a wide variety of organic pollutants introduced into the natural water resources or wastewater treatment systems. One of the main sources with severe pollution problems worldwide is the textile industry and its dye-containing wastewaters (i.e. 10,000 different textile dyes with an estimated annual production of 7.105 metric tonnes are commercially available worldwide; 30% of these dyes are used in excess of 1,000 tonnes per annum, and 90% of the textile products are used at the level of 100 tonnes per annum or less) (Baban et al., 2010; Robinson et al., 2001; Soloman et al., 2009). 10-25% of textile dyes are lost during the dyeing process, and 2-20% are directly discharged as aqueous effluents in different environmental components. In particular, the discharge of dye-containing effluents into the water environment is undesirable, not only because of their colour, but also because many of dyes released and their breakdown products are toxic, carcinogenic or mutagenic to life forms mainly because of carcinogens, such as benzidine, naphthalene and other aromatic compounds (Suteu et al., 2009; Zaharia et al., 2009). Without adequate treatment these dyes can remain in the environment for a long period of time. For instance, the half-life of hydrolysed Reactive Blue 19 is about 46 years at pH 7 and 25°C (Hao et al., 2000). In addition to the aforementioned problems, the textile industry consumes large amounts of potable and industrial water (Tables 1, 2 and Fig. 1) as processing water (90-94%) and a relatively low percentage as cooling water (6-10%) (in comparison with the chemical industry where only 20% is used as process water and the rest for cooling). The recycling of treated wastewater has been recommended due to the high levels of contamination in dyeing and finishing processes (i.e. dyes and their breakdown products, pigments, dye intermediates, auxiliary chemicals and heavy metals, etc.) (Tables 3, 4 and 5) (adapted from Bertea A. and Bertea A.P., 2008; Bisschops and Spanjers, 2003; Correia et al., 1994; Orhon et al., 2001).
CITATION STYLE
Mohibbul, M., Bahnemann, D., & Muneer, M. (2012). Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics. In Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update. InTech. https://doi.org/10.5772/34522
Mendeley helps you to discover research relevant for your work.