Role of Taurine in Testicular Function in the Fragile x Mouse

0Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fragile X syndrome is an X-linked dominant disorder and the most common cause of inherited mental retardation. It is caused by trinucleotide repeat expansion in the fragile X mental retardation 1 gene (FMR1) at the Xq27.3. The expansion blocks expression of the gene product, Fragile X Mental Retardation Protein (FMRP). The syndrome includes mild to moderate mental retardation and behavioral manifestations such as tactile defensiveness, gaze avoidance, repetitive motor mannerisms, perseverative (repetitive) speech, hyperarousal and it frequently includes seizures. This behavioral phenotype overlaps significantly with autism spectrum disorder. The knockout mice lack normal Fmr1 protein and show macro-orchidism, learning deficits, and hyperactivity. Consequently, this knockout mouse may serve as a valuable tool in the elucidation of the physiological role of FMR1 and the mechanisms involved in macroorchidism, abnormal behavior, abnormalities comparable to those of human fragile X patients. In this study we evaluated the effects of taurine on the testicular physiology to better understand the cellular mechanisms underlying macro-orchidism. We found that there was a significant decrease in the number of Leydig cells in the testis of fragile X mouse. Furthermore, the expression of somatostatin was drastically decreased and differential expression pattern of CDK5 in fragile X mouse testis. In the control testis, CDK is expressed in primary and secondary spermatids whereas in the Fmr1 ko mice CDK 5 is expressed mainly in spermatogonia. Taurine supplementation led to an increase in CDK5 expression in both controls and Ko mice. CDKs (Cyclin-dependent kinases) are a group of serine/threonine protein kinases activated by binding to a regulatory subunit cyclin. Over 20 functionally diverse proteins involved in cytoskeleton dynamics, cell adhesion, transport, and membrane trafficking act as CDK5 substrates elucidating the molecular mechanisms of CDK5 function. CDK5 phosphorylates a diverse list of substrates, implicating it in the regulation of a range of cellular processes. CDK5 is expressed in Leydig cells, Sertoli cells, spermatogonia and peritubular cells indicating a role in spermatogenesis. In this study we examined the expression levels of CDK5 and how it is affected by taurine supplementation in the testes and found that taurine plays an important role in testicular physiology and corrected some of the pathophysiology observed in the fragile x mouse testis.

Cite

CITATION STYLE

APA

Lin, S., & El Idrissi, A. (2019). Role of Taurine in Testicular Function in the Fragile x Mouse. In Advances in Experimental Medicine and Biology (Vol. 1155, pp. 155–162). Springer New York LLC. https://doi.org/10.1007/978-981-13-8023-5_14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free