The eddy covariance method is widely used to investigate fluxes of energy, water, and carbon dioxide at landscape scales, providing important information on how ecological systems function. Flux measurements quantify ecosystem responses to environmental perturbations and management strategies, including nature-based climate-change mitigation measures. However, due to the high cost of conventional instrumentation, most eddy covariance studies employ a single system, limiting spatial representation to the flux footprint. Insufficient replication may be limiting our understanding of ecosystem behavior. To address this limitation, we deployed eight lower-cost eddy covariance systems in two clusters around two conventional eddy covariance systems in the Chihuahuan Desert of North America for a period of 2 years. These dryland settings characterized by large temperature variations and relatively low carbon dioxide fluxes represented a challenging setting for eddy covariance. We found very good closure of energy and water balance across all systems (within ±9% of unity). We found very good correspondence between the lower-cost and conventional systems' fluxes of sensible heat (with concordance correlation coefficient (CCC) of ≥0.87), latent energy (evapotranspiration; CCC ≥ 0.89), and useful correspondence in the net ecosystem exchange ((NEE); with CCC ≥ 0.4) at the daily temporal resolution. Relative to the conventional systems, the low-frequency systems were characterized by a higher level of random error, particularly in the NEE fluxes. Lower-cost systems can enable wider deployment affording better replication and sampling of spatiotemporal variability at the expense of greater measurement noise that might be limiting for certain applications. Replicated eddy covariance observations may be useful when addressing gaps in the existing monitoring of critical and underrepresented ecosystems and for measuring areas larger than a single flux footprint.
CITATION STYLE
Cunliffe, A. M., Boschetti, F., Clement, R., Sitch, S., Anderson, K., Duman, T., … Hill, T. C. (2022). Strong Correspondence in Evapotranspiration and Carbon Dioxide Fluxes Between Different Eddy Covariance Systems Enables Quantification of Landscape Heterogeneity in Dryland Fluxes. Journal of Geophysical Research: Biogeosciences, 127(8). https://doi.org/10.1029/2021JG006240
Mendeley helps you to discover research relevant for your work.